Course in combinatorics /
Lint, Jacobus Hendricus van, 1932-
Course in combinatorics / J.H. van Lint and R.M. Wilson. - 2nd ed. - Cambridge, U.K. ; New York : Cambridge University Press, 2017. - xiv, 602 p. : ill. ; 24 cm.
Rs.650/-
Includes bibliographical references and indexes.
1. Graphs
2. Trees
3. Colorings of graphs and Ramsey's theorem
4. Turán's theorem and extremal graphs
5. Systems of distinct representatives
6. Dilworth's theorem and extremal set theory
7. Flows in networks
8. De Bruijn sequences
9. The addressing problem for graphs
10. The principle of inclusion and exclusion: inversion formulae
11. Permanents
12. The Van der Waerden conjecture
13. Elementary counting: Stirling numbers
14. Recursions and generating functions
15. Partitions
16. (0,1)-matrices
17. Latin squares
18. Hadamard matrices, Reed-Muller codes
19. Designs
20. Codes and designs
21. Strongly regular graphs and partial geometries
22. Orthogonal Latin squares
23. Projective and combinatorial geometries
24. Gaussian numbers and q-analogues
25. Lattices and Möbius inversion
26. Combinatorial designs and projective geometries
27. Difference sets and automorphisms
28. Difference sets and the group ring
29. Codes and symmetric designs
30. Association schemes
31. Algebraic graph theory: eigenvalue techniques
32. Graphs: planarity and duality
33. Graphs: colorings and embeddings
34. Electrical networks and squared squares
35. Pólya theory of counting
36. Baranyai's theorem
Appendices
9780521718172 (pbk.)
2002276170
Combinatorial analysis.
511.6 LIN
Course in combinatorics / J.H. van Lint and R.M. Wilson. - 2nd ed. - Cambridge, U.K. ; New York : Cambridge University Press, 2017. - xiv, 602 p. : ill. ; 24 cm.
Rs.650/-
Includes bibliographical references and indexes.
1. Graphs
2. Trees
3. Colorings of graphs and Ramsey's theorem
4. Turán's theorem and extremal graphs
5. Systems of distinct representatives
6. Dilworth's theorem and extremal set theory
7. Flows in networks
8. De Bruijn sequences
9. The addressing problem for graphs
10. The principle of inclusion and exclusion: inversion formulae
11. Permanents
12. The Van der Waerden conjecture
13. Elementary counting: Stirling numbers
14. Recursions and generating functions
15. Partitions
16. (0,1)-matrices
17. Latin squares
18. Hadamard matrices, Reed-Muller codes
19. Designs
20. Codes and designs
21. Strongly regular graphs and partial geometries
22. Orthogonal Latin squares
23. Projective and combinatorial geometries
24. Gaussian numbers and q-analogues
25. Lattices and Möbius inversion
26. Combinatorial designs and projective geometries
27. Difference sets and automorphisms
28. Difference sets and the group ring
29. Codes and symmetric designs
30. Association schemes
31. Algebraic graph theory: eigenvalue techniques
32. Graphs: planarity and duality
33. Graphs: colorings and embeddings
34. Electrical networks and squared squares
35. Pólya theory of counting
36. Baranyai's theorem
Appendices
9780521718172 (pbk.)
2002276170
Combinatorial analysis.
511.6 LIN