Linear models with R (Record no. 102346)

MARC details
000 -LEADER
fixed length control field 03626nam a22001697a 4500
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781439887332
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 519.5 FAR
100 ## - MAIN ENTRY--PERSONAL NAME
Personal name Faraway, Julian J
245 ## - TITLE STATEMENT
Title Linear models with R
250 ## - EDITION STATEMENT
Edition statement 2
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Place of publication, distribution, etc. New York
Name of publisher, distributor, etc. CRC Press
Date of publication, distribution, etc. 2015
300 ## - PHYSICAL DESCRIPTION
Extent xii, 274p.
Other physical details 24cm; Hard
500 ## - GENERAL NOTE
General note 1040/2nd Jan 2015<br/>Rs.6060/-
505 ## - FORMATTED CONTENTS NOTE
Formatted contents note Contents<br/>Preface xi<br/>1 Introduction 1<br/>1.1 Before You Start 1<br/>1.2 Initial Data Analysis 2<br/>1.3 When to Use Linear Modeling 7<br/>1.4 History 8<br/>2 Estimation 13<br/>2.1 Linear Model 13<br/>2.2 Matrix Representation 14<br/>2.3 Estimating β 15<br/>2.4 Least Squares Estimation 16<br/>2.5 Examples of Calculating ˆ<br/>β 17<br/>2.6 Example 17<br/>2.7 QR Decomposition 20<br/>2.8 Gauss–Markov Theorem 22<br/>2.9 Goodness of Fit 23<br/>2.10 Identifiability 26<br/>2.11 Orthogonality 28<br/>3 Inference 33<br/>3.1 Hypothesis Tests to Compare Models 33<br/>3.2 Testing Examples 35<br/>3.3 Permutation Tests 40<br/>3.4 Sampling 42<br/>3.5 Confidence Intervals for β 43<br/>3.6 Bootstrap Confidence Intervals 46<br/>4 Prediction 51<br/>4.1 Confidence Intervals for Predictions 51<br/>4.2 Predicting Body Fat 52<br/>4.3 Autoregression 54<br/>4.4 What Can Go Wrong with Predictions? 56<br/>5 Explanation 59<br/>5.1 Simple Meaning 59<br/>5.2 Causality 61<br/>5.3 Designed Experiments 62<br/>5.4 Observational Data 63<br/>5.5 Matching 65<br/>5.6 Covariate Adjustment 68<br/>5.7 Qualitative Support for Causation 69<br/>6 Diagnostics 73<br/>6.1 Checking Error Assumptions 73<br/>6.1.1 Constant Variance 73<br/>6.1.2 Normality 78<br/>6.1.3 Correlated Errors 81<br/>6.2 Finding Unusual Observations 83<br/>6.2.1 Leverage 83<br/>6.2.2 Outliers 85<br/>6.2.3 Influential Observations 89<br/>6.3 Checking the Structure of the Model 92<br/>6.4 Discussion 96<br/>7 Problems with the Predictors 99<br/>7.1 Errors in the Predictors 99<br/>7.2 Changes of Scale 103<br/>7.3 Collinearity 106<br/>8 Problems with the Error 113<br/>8.1 Generalized Least Squares 113<br/>8.2 Weighted Least Squares 116<br/>8.3 Testing for Lack of Fit 119<br/>8.4 Robust Regression 123<br/>8.4.1 M-Estimation 123<br/>8.4.2 Least Trimmed Squares 126<br/>9 Transformation 133<br/>9.1 Transforming the Response 133<br/>9.2 Transforming the Predictors 137<br/>9.3 Broken Stick Regression 137<br/>9.4 Polynomials 139<br/>9.5 Splines 141<br/>9.6 Additive Models 144<br/>9.7 More Complex Models 145<br/>10 Model Selection 149<br/>10.1 Hierarchical Models 150<br/>10.2 Testing-Based Procedures 151<br/>10.3 Criterion-Based Procedures 153<br/>10.4 Summary 159<br/>11 Shrinkage Methods 161<br/>11.1 Principal Components 161<br/>11.2 Partial Least Squares 172<br/>11.3 Ridge Regression 174<br/>11.4 Lasso 177<br/>12 Insurance Redlining — A Complete Example 183<br/>12.1 Ecological Correlation 183<br/>12.2 Initial Data Analysis 185<br/>12.3 Full Model and Diagnostics 188<br/>12.4 Sensitivity Analysis 190<br/>12.5 Discussion 194<br/>13 Missing Data 197<br/>13.1 Types of Missing Data 197<br/>13.2 Deletion 198<br/>13.3 Single Imputation 200<br/>13.4 Multiple Imputation 202<br/>14 Categorical Predictors 205<br/>14.1 A Two-Level Factor 205<br/>14.2 Factors and Quantitative Predictors 209<br/>14.3 Interpretation with Interaction Terms 212<br/>14.4 Factors With More Than Two Levels 213<br/>14.5 Alternative Codings of Qualitative Predictors 219<br/>15 One Factor Models 223<br/>15.1 The Model 223<br/>15.2 An Example 224<br/>15.3 Diagnostics 227<br/>15.4 Pairwise Comparisons 228<br/>15.5 False Discovery Rate 230<br/>16 Models with Several Factors 235<br/>16.1 Two Factors with No Replication 235<br/>16.2 Two Factors with Replication 239<br/>16.3 Two Factors with an Interaction 243<br/>16.4 Larger Factorial Experiments 246<br/>17 Experiments with Blocks 251<br/>17.1 Randomized Block Design 252<br/>17.2 Latin Squares 256<br/>17.3 Balanced Incomplete Block Design 259<br/>A About R 265<br/>Bibliography 267<br/>Index 271
650 ## - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Analysis of variance
-- Regression analysis
-- R (Computer programming Language)
-- R computer Programing Language
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type Books
Holdings
Withdrawn status Lost status Damaged status Not for loan Collection code Home library Current library Shelving location Date acquired Total Checkouts Full call number Barcode Date last seen Date last checked out Price effective from Koha item type
        GSB Collection       02/01/2015 4 519.5 FAR B1874 13/07/2021 25/06/2019 06/01/2015 Books

Copyright @ 2024  |  All rights reserved, H.T. Parekh Library, Krea University, Sri City