Data mining and predictive analytics (Record no. 102716)

MARC details
000 -LEADER
fixed length control field 02085nam a22001937a 4500
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781118116297
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 658.4038 LAR
100 ## - MAIN ENTRY--PERSONAL NAME
Personal name Larose, Daniel T.; Larose, Chantal D
245 ## - TITLE STATEMENT
Title Data mining and predictive analytics
250 ## - EDITION STATEMENT
Edition statement 2
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Place of publication, distribution, etc. New Delhi
Name of publisher, distributor, etc. Wiley
Date of publication, distribution, etc. 2015
300 ## - PHYSICAL DESCRIPTION
Extent xix, 794 p.
Other physical details 24 cm ; Hard
500 ## - GENERAL NOTE
General note Alpha 2255/191115/Rs.9,600/-
505 ## - FORMATTED CONTENTS NOTE
Formatted contents note 1. An introduction to data mining and predictive analytics<br/>2. Data pre-processing<br/>3. Exploratory data analysis<br/>4. Dimension-reduction methods<br/>5. Univariate statistical analysis<br/>6. Multivariate statistics<br/>7. Preparing to model the data<br/>8. Simple linear regression<br/>9. Multiple regression and model building<br/>10. K- nearest neighbour algorithm<br/>11. Decision trees<br/>12. Neural networks<br/>13. Logistic regression<br/>14. Naïve bayes and Bayesian networks<br/>15. Model evaluation techniques<br/>16. Cost- benefit analysis using data-driven costs<br/>17. Cost benefit analysis for trainary and k-nary classification models<br/>18. Graphical evaluation of classification models<br/>19. Hierarchical and k-means clustering<br/>20. Kohonen networks<br/>21. Birch clustering<br/>22. Measuring cluster goodness<br/>23. Association rules<br/>24. Segmentation models<br/>25. Ensemable methods: bagging and boosting<br/>26. Model voting and propensity averaging<br/>27. Genetic algorthms<br/>28. Imputation of missing data<br/>29. Case study Part.1 business understanding data preparation and EDA<br/>30. Case study Part 2 clustering and principal components analysis<br/>31. Case study Part.3 Modelling and evaluation for performance and interpretability<br/>32. Case study Part.4 Modelling and evaluation for high performance only.
520 ## - SUMMARY, ETC.
Summary, etc. Learn methods of data analysis and their application to real-world data sets This updated second edition serves as an introduction to data mining methods and models, including association rules, clustering, neural networks, logistic regression, and multivariate analysis.
650 ## - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Prediction theory
-- Business--Data processing
-- Data mining
856 ## - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier <a href="http://as.wiley.com/WileyCDA/WileyTitle/productCd-1118116194.html">http://as.wiley.com/WileyCDA/WileyTitle/productCd-1118116194.html</a>
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type Books
Holdings
Withdrawn status Lost status Damaged status Not for loan Collection code Home library Current library Shelving location Date acquired Source of acquisition Total Checkouts Total Renewals Full call number Barcode Date last seen Date last checked out Price effective from Koha item type
        GSB Collection   H.T. Parekh Library   12/11/2015 Recommend 23   658.4038 LAR B2015 24/06/2019 24/06/2019 12/11/2015 Books

Copyright @ 2024  |  All rights reserved, H.T. Parekh Library, Krea University, Sri City