Amazon cover image
Image from Amazon.com

Using R for introductory statistics

By: Material type: TextTextSeries: The R SeriesPublication details: London CRC Press 2014Edition: 2Description: xvii,502 p. 24 cm ; HardISBN:
  • 9781466590731
Subject(s): DDC classification:
  • 519.5 VER
Online resources:
Contents:
DATA What Is Data? Some R Essentials Accessing Data by Using Indices Reading in Other Sources of Data UNIVARIATE DATA Categorical Data Numeric Data Shape of a Distribution BIVARIATE DATA Pairs of Categorical Variables Comparing Independent Samples Relationships in Numeric Data Simple Linear Regression MULTIVARIATE DATA Viewing Multivariate Data R Basics: Data Frames and Lists Using Model Formula with Multivariate Data Lattice Graphics Types of Data in R DESCRIBING POPULATIONS Populations Families of Distributions The Central Limit Theorem SIMULATION The Normal Approximation for the Binomial for loops Simulations Related to the Central Limit Theorem Defining a Function Investigating Distributions Bootstrap Samples Alternates to for loops CONFIDENCE INTERVALS Confidence Interval Ideas Confidence Intervals for a Population Proportion, p Confidence Intervals for the Population Mean, µ Other Confidence Intervals Confidence Intervals for Differences Confidence Intervals for the Median SIGNIFICANCE TESTS Significance Test for a Population Proportion Significance Test for the Mean (t-Tests) Significance Tests and Confidence Intervals Significance Tests for the Median Two-Sample Tests of Proportion Two-Sample Tests of Center GOODNESS OF FIT The Chi-Squared Goodness-of-Fit Test The Chi-Squared Test of Independence Goodness-of-Fit Tests for Continuous Distributions LINEAR REGRESSION The Simple Linear Regression Model Statistical Inference for Simple Linear Regression Multiple Linear Regression ANALYSIS OF VARIANCE One-Way ANOVA Using lm() for ANOVA ANCOVA Two-Way ANOVA TWO EXTENSIONS OF THE LINEAR MODEL Logistic Regression Nonlinear Models APPENDIX A: GETTING, INSTALLING, AND RUNNING R Installing and Starting R Extending R Using Additional Packages APPENDIX B: GRAPHICAL USER INTERFACES AND R The Windows GUI The Mac OS X GUI Rcdmr APPENDIX C: TEACHING WITH R APPENDIX D: MORE ON GRAPHICS WITH R Low- and High-Level Graphic Functions Creating New Graphics in R APPENDIX E: PROGRAMMING IN R Editing Functions Using Functions Using Files and a Better Editor Object-Oriented Programming with R INDEX Instructors We provide complimentary e-inspection copies of primary textbooks to instructors considering our books for course adoption. Request an e-inspection copy Share this Title Related Titles 1 of 2 Using R and RStudio for Data Management, Statistical Analysis, and Graphics, Second Edition
Summary: Using R for Introductory Statistics guides students through the basics of R, helping them overcome the sometimes steep learning curve. The author does this by breaking the material down into small, task-oriented steps. The second edition maintains the features that made the first edition so popular, while updating data, examples, and changes to R in line with the current version. See What’s New in the Second Edition: Increased emphasis on more idiomatic R provides a grounding in the functionality of base R. Discussions of the use of RStudio helps new R users avoid as many pitfalls as possible. Use of knitr package makes code easier to read and therefore easier to reason about. Additional information on computer-intensive approaches motivates the traditional approach. Updated examples and data make the information current and topical. The book has an accompanying package, UsingR, available from CRAN, R’s repository of user-contributed packages. The package contains the data sets mentioned in the text (data(package="UsingR")), answers to selected problems (answers()), a few demonstrations (demo()), the errata (errata()), and sample code from the text. The topics of this text line up closely with traditional teaching progression; however, the book also highlights computer-intensive approaches to motivate the more traditional approach. The authors emphasize realistic data and examples and rely on visualization techniques to gather insight. They introduce statistics and R seamlessly, giving students the tools they need to use R and the information they need to navigate the sometimes complex world of statistical computing.
Tags from this library: No tags from this library for this title. Log in to add tags.
Holdings
Item type Current library Collection Call number Status Date due Barcode
Books Books H.T. Parekh Library GSB Collection 519.5 VER (Browse shelf(Opens below)) In transit from H.T. Parekh Library to H.T. Parekh Library since 11/09/2024 B2033

Alpha Invoice.2231- 11th Feb 16 Rs.4,004.27/-

DATA
What Is Data?
Some R Essentials
Accessing Data by Using Indices
Reading in Other Sources of Data
UNIVARIATE DATA
Categorical Data
Numeric Data
Shape of a Distribution
BIVARIATE DATA
Pairs of Categorical Variables
Comparing Independent Samples
Relationships in Numeric Data
Simple Linear Regression
MULTIVARIATE DATA
Viewing Multivariate Data
R Basics: Data Frames and Lists
Using Model Formula with Multivariate Data
Lattice Graphics
Types of Data in R
DESCRIBING POPULATIONS
Populations
Families of Distributions
The Central Limit Theorem
SIMULATION
The Normal Approximation for the Binomial
for loops
Simulations Related to the Central Limit Theorem
Defining a Function
Investigating Distributions
Bootstrap Samples
Alternates to for loops
CONFIDENCE INTERVALS
Confidence Interval Ideas
Confidence Intervals for a Population Proportion, p
Confidence Intervals for the Population Mean, µ
Other Confidence Intervals
Confidence Intervals for Differences
Confidence Intervals for the Median
SIGNIFICANCE TESTS
Significance Test for a Population Proportion
Significance Test for the Mean (t-Tests)
Significance Tests and Confidence Intervals
Significance Tests for the Median
Two-Sample Tests of Proportion
Two-Sample Tests of Center
GOODNESS OF FIT
The Chi-Squared Goodness-of-Fit Test
The Chi-Squared Test of Independence
Goodness-of-Fit Tests for Continuous Distributions
LINEAR REGRESSION
The Simple Linear Regression Model
Statistical Inference for Simple Linear Regression
Multiple Linear Regression
ANALYSIS OF VARIANCE
One-Way ANOVA
Using lm() for ANOVA
ANCOVA
Two-Way ANOVA
TWO EXTENSIONS OF THE LINEAR MODEL
Logistic Regression
Nonlinear Models
APPENDIX A: GETTING, INSTALLING, AND RUNNING R
Installing and Starting R
Extending R Using Additional Packages
APPENDIX B: GRAPHICAL USER INTERFACES AND R
The Windows GUI
The Mac OS X GUI
Rcdmr
APPENDIX C: TEACHING WITH R
APPENDIX D: MORE ON GRAPHICS WITH R
Low- and High-Level Graphic Functions
Creating New Graphics in R
APPENDIX E: PROGRAMMING IN R
Editing Functions
Using Functions
Using Files and a Better Editor
Object-Oriented Programming with R
INDEX
Instructors

We provide complimentary e-inspection copies of primary textbooks to instructors considering our books for course adoption.

Request an
e-inspection copy
Share this Title

Related Titles
1 of 2

Using R and RStudio for Data Management, Statistical Analysis, and Graphics, Second Edition

Using R for Introductory Statistics guides students through the basics of R, helping them overcome the sometimes steep learning curve. The author does this by breaking the material down into small, task-oriented steps. The second edition maintains the features that made the first edition so popular, while updating data, examples, and changes to R in line with the current version.

See What’s New in the Second Edition:

Increased emphasis on more idiomatic R provides a grounding in the functionality of base R.
Discussions of the use of RStudio helps new R users avoid as many pitfalls as possible.
Use of knitr package makes code easier to read and therefore easier to reason about.
Additional information on computer-intensive approaches motivates the traditional approach.
Updated examples and data make the information current and topical.
The book has an accompanying package, UsingR, available from CRAN, R’s repository of user-contributed packages. The package contains the data sets mentioned in the text (data(package="UsingR")), answers to selected problems (answers()), a few demonstrations (demo()), the errata (errata()), and sample code from the text.

The topics of this text line up closely with traditional teaching progression; however, the book also highlights computer-intensive approaches to motivate the more traditional approach. The authors emphasize realistic data and examples and rely on visualization techniques to gather insight. They introduce statistics and R seamlessly, giving students the tools they need to use R and the information they need to navigate the sometimes complex world of statistical computing.

There are no comments on this title.

to post a comment.

Copyright @ 2024  |  All rights reserved, H.T. Parekh Library, Krea University, Sri City