Amazon cover image
Image from Amazon.com

Deep learning cookbook : practical recipes to get started quickly / Douwe Osinga.

By: Material type: TextTextPublisher: Sebastopol, CA : Mumbai O'Reilly Media, SPD 2018Description: xv, 234 pages : illustrations ; 23 cmISBN:
  • 9789352137572
Subject(s): DDC classification:
  • 006.31 OSI
Contents:
Tools and techniques -- Getting unstuck -- Calculating text similarity using word embeddings -- Building a recommender system based on outgoing Wikipedia links -- Generating text in the style of an example text -- Question matching -- Suggesting emojis -- Sequence-to-sequence mapping -- Reusing a pretrained image recognition network -- Building an inverse image search service -- Detecting multiple images -- Image style -- Generating images with autoencoders -- Generating icons using deep nets -- Music and deep learning -- Productionizing machine learning systems.
Summary: Deep learning doesn't have to be intimidating. Until recently, this machine-learning method required years of study, but with frameworks such as Keras and Tensorflow, software engineers without a background in machine learning can quickly enter the field. With the recipes in this cookbook, you'll learn how to solve deep-learning problems for classifying and generating text, images, and music. Each chapter consists of several recipes needed to complete a single project, such as training a music recommending system. Author Douwe Osinga also provides a chapter with half a dozen techniques to help you if you're stuck. Examples are written in Python with code available on GitHub as a set of Python notebooks. You'll learn how to: Create applications that will serve real users; Use word embeddings to calculate text similarity; Build a movie recommender system based on Wikipedia links; Learn how AIs see the world by visualizing their internal state; Build a model to suggest emojis for pieces of text; Reuse pretrained networks to build an inverse image search service; Compare how GANs, autoencoders and LSTMs generate icons; Detect music styles and index song collections.
Tags from this library: No tags from this library for this title. Log in to add tags.
Holdings
Item type Current library Collection Call number Status Date due Barcode
Books Books H.T. Parekh Library GSB Collection 006.31 OSI (Browse shelf(Opens below)) Available B2961

Rs.725/-
TB 1989/6

Includes index.

Tools and techniques -- Getting unstuck -- Calculating text similarity using word embeddings -- Building a recommender system based on outgoing Wikipedia links -- Generating text in the style of an example text -- Question matching -- Suggesting emojis -- Sequence-to-sequence mapping -- Reusing a pretrained image recognition network -- Building an inverse image search service -- Detecting multiple images -- Image style -- Generating images with autoencoders -- Generating icons using deep nets -- Music and deep learning -- Productionizing machine learning systems.

Deep learning doesn't have to be intimidating. Until recently, this machine-learning method required years of study, but with frameworks such as Keras and Tensorflow, software engineers without a background in machine learning can quickly enter the field. With the recipes in this cookbook, you'll learn how to solve deep-learning problems for classifying and generating text, images, and music. Each chapter consists of several recipes needed to complete a single project, such as training a music recommending system. Author Douwe Osinga also provides a chapter with half a dozen techniques to help you if you're stuck. Examples are written in Python with code available on GitHub as a set of Python notebooks. You'll learn how to: Create applications that will serve real users; Use word embeddings to calculate text similarity; Build a movie recommender system based on Wikipedia links; Learn how AIs see the world by visualizing their internal state; Build a model to suggest emojis for pieces of text; Reuse pretrained networks to build an inverse image search service; Compare how GANs, autoencoders and LSTMs generate icons; Detect music styles and index song collections.

There are no comments on this title.

to post a comment.

Copyright @ 2024  |  All rights reserved, H.T. Parekh Library, Krea University, Sri City