Amazon cover image
Image from Amazon.com

Statistical Data Analysis Using SAS : Intermediate Statistical Methods / by Mervyn G. Marasinghe, Kenneth J. Koehler.

By: Contributor(s): Material type: TextTextSeries: Springer Texts in StatisticsPublisher: Cham : Springer International Publishing : 2018Edition: 2nd editionDescription: xiv, 679 pages 409 illustrations, 390 illustrations in color. 25 cmISBN:
  • 9783319692388 (pbk.)
Subject(s): DDC classification:
  • 519.5 MARĀ 23
Contents:
1 Introduction to the SAS Language -- 2 More on SAS Programming and Some Applications -- 3 Introduction to SAS Graphics -- 4 Statistical Analysis of Regression Models -- 5 Analysis of Variance Models -- 6 Analysis of Variance: Random and Mixed Effects Models -- 7 Beyond Regression and Analysis of Variance -- Appendices -- References.
Summary: The aim of this textbook (previously titled SAS for Data Analytics) is to teach the use of SAS for statistical analysis of data for advanced undergraduate and graduate students in statistics, data science, and disciplines involving analyzing data. The book begins with an introduction beyond the basics of SAS, illustrated with non-trivial, real-world, worked examples. It proceeds to SAS programming and applications, SAS graphics, statistical analysis of regression models, analysis of variance models, analysis of variance with random and mixed effects models, and then takes the discussion beyond regression and analysis of variance to conclude. Pedagogically, the authors introduce theory and methodological basis topic by topic, present a problem as an application, followed by a SAS analysis of the data provided and a discussion of results. The text focuses on applied statistical problems and methods. Key features include: end of chapter exercises, downloadable SAS code and data sets, and advanced material suitable for a second course in applied statistics with every method explained using SAS analysis to illustrate a real-world problem. New to this edition: - Covers SAS v9.2 and incorporates new commands - Uses SAS ODS (output delivery system) for reproduction of tables and graphics output - Presents new commands needed to produce ODS output - All chapters rewritten for clarity - New and updated examples throughout - All SAS outputs are new and updated, including graphics - More exercises and problems - Completely new chapter on analysis of nonlinear and generalized linear models - Completely new appendix Mervyn G. Marasinghe, PhD, is Associate Professor Emeritus of Statistics at Iowa State University, where he has taught courses in statistical methods and statistical computing. Kenneth J. Koehler, PhD, is University Professor of Statistics at Iowa State University, where he teaches courses in statistical methodology at both graduate and undergraduate levels and primarily uses SAS to supplement his teaching.
Tags from this library: No tags from this library for this title. Log in to add tags.
Holdings
Item type Current library Collection Call number Status Date due Barcode
Books Books H.T. Parekh Library SIAS Collection 519.5 MAR (Browse shelf(Opens below)) Available K3758

Euro : 79.99/-
TBH86/185

1 Introduction to the SAS Language -- 2 More on SAS Programming and Some Applications -- 3 Introduction to SAS Graphics -- 4 Statistical Analysis of Regression Models -- 5 Analysis of Variance Models -- 6 Analysis of Variance: Random and Mixed Effects Models -- 7 Beyond Regression and Analysis of Variance -- Appendices -- References.

The aim of this textbook (previously titled SAS for Data Analytics) is to teach the use of SAS for statistical analysis of data for advanced undergraduate and graduate students in statistics, data science, and disciplines involving analyzing data. The book begins with an introduction beyond the basics of SAS, illustrated with non-trivial, real-world, worked examples. It proceeds to SAS programming and applications, SAS graphics, statistical analysis of regression models, analysis of variance models, analysis of variance with random and mixed effects models, and then takes the discussion beyond regression and analysis of variance to conclude. Pedagogically, the authors introduce theory and methodological basis topic by topic, present a problem as an application, followed by a SAS analysis of the data provided and a discussion of results. The text focuses on applied statistical problems and methods. Key features include: end of chapter exercises, downloadable SAS code and data sets, and advanced material suitable for a second course in applied statistics with every method explained using SAS analysis to illustrate a real-world problem. New to this edition: - Covers SAS v9.2 and incorporates new commands - Uses SAS ODS (output delivery system) for reproduction of tables and graphics output - Presents new commands needed to produce ODS output - All chapters rewritten for clarity - New and updated examples throughout - All SAS outputs are new and updated, including graphics - More exercises and problems - Completely new chapter on analysis of nonlinear and generalized linear models - Completely new appendix Mervyn G. Marasinghe, PhD, is Associate Professor Emeritus of Statistics at Iowa State University, where he has taught courses in statistical methods and statistical computing. Kenneth J. Koehler, PhD, is University Professor of Statistics at Iowa State University, where he teaches courses in statistical methodology at both graduate and undergraduate levels and primarily uses SAS to supplement his teaching.

Description based on publisher-supplied MARC data.

There are no comments on this title.

to post a comment.

Copyright @ 2024  |  All rights reserved, H.T. Parekh Library, Krea University, Sri City