TY - BOOK AU - Faraway, Julian J TI - Linear models with R SN - 9781439887332 U1 - 519.5 FAR PY - 2015/// CY - New York PB - CRC Press KW - Analysis of variance KW - Regression analysis KW - R (Computer programming Language) KW - R computer Programing Language N1 - 1040/2nd Jan 2015 Rs.6060/-; Contents Preface xi 1 Introduction 1 1.1 Before You Start 1 1.2 Initial Data Analysis 2 1.3 When to Use Linear Modeling 7 1.4 History 8 2 Estimation 13 2.1 Linear Model 13 2.2 Matrix Representation 14 2.3 Estimating β 15 2.4 Least Squares Estimation 16 2.5 Examples of Calculating ˆ β 17 2.6 Example 17 2.7 QR Decomposition 20 2.8 Gauss–Markov Theorem 22 2.9 Goodness of Fit 23 2.10 Identifiability 26 2.11 Orthogonality 28 3 Inference 33 3.1 Hypothesis Tests to Compare Models 33 3.2 Testing Examples 35 3.3 Permutation Tests 40 3.4 Sampling 42 3.5 Confidence Intervals for β 43 3.6 Bootstrap Confidence Intervals 46 4 Prediction 51 4.1 Confidence Intervals for Predictions 51 4.2 Predicting Body Fat 52 4.3 Autoregression 54 4.4 What Can Go Wrong with Predictions? 56 5 Explanation 59 5.1 Simple Meaning 59 5.2 Causality 61 5.3 Designed Experiments 62 5.4 Observational Data 63 5.5 Matching 65 5.6 Covariate Adjustment 68 5.7 Qualitative Support for Causation 69 6 Diagnostics 73 6.1 Checking Error Assumptions 73 6.1.1 Constant Variance 73 6.1.2 Normality 78 6.1.3 Correlated Errors 81 6.2 Finding Unusual Observations 83 6.2.1 Leverage 83 6.2.2 Outliers 85 6.2.3 Influential Observations 89 6.3 Checking the Structure of the Model 92 6.4 Discussion 96 7 Problems with the Predictors 99 7.1 Errors in the Predictors 99 7.2 Changes of Scale 103 7.3 Collinearity 106 8 Problems with the Error 113 8.1 Generalized Least Squares 113 8.2 Weighted Least Squares 116 8.3 Testing for Lack of Fit 119 8.4 Robust Regression 123 8.4.1 M-Estimation 123 8.4.2 Least Trimmed Squares 126 9 Transformation 133 9.1 Transforming the Response 133 9.2 Transforming the Predictors 137 9.3 Broken Stick Regression 137 9.4 Polynomials 139 9.5 Splines 141 9.6 Additive Models 144 9.7 More Complex Models 145 10 Model Selection 149 10.1 Hierarchical Models 150 10.2 Testing-Based Procedures 151 10.3 Criterion-Based Procedures 153 10.4 Summary 159 11 Shrinkage Methods 161 11.1 Principal Components 161 11.2 Partial Least Squares 172 11.3 Ridge Regression 174 11.4 Lasso 177 12 Insurance Redlining — A Complete Example 183 12.1 Ecological Correlation 183 12.2 Initial Data Analysis 185 12.3 Full Model and Diagnostics 188 12.4 Sensitivity Analysis 190 12.5 Discussion 194 13 Missing Data 197 13.1 Types of Missing Data 197 13.2 Deletion 198 13.3 Single Imputation 200 13.4 Multiple Imputation 202 14 Categorical Predictors 205 14.1 A Two-Level Factor 205 14.2 Factors and Quantitative Predictors 209 14.3 Interpretation with Interaction Terms 212 14.4 Factors With More Than Two Levels 213 14.5 Alternative Codings of Qualitative Predictors 219 15 One Factor Models 223 15.1 The Model 223 15.2 An Example 224 15.3 Diagnostics 227 15.4 Pairwise Comparisons 228 15.5 False Discovery Rate 230 16 Models with Several Factors 235 16.1 Two Factors with No Replication 235 16.2 Two Factors with Replication 239 16.3 Two Factors with an Interaction 243 16.4 Larger Factorial Experiments 246 17 Experiments with Blocks 251 17.1 Randomized Block Design 252 17.2 Latin Squares 256 17.3 Balanced Incomplete Block Design 259 A About R 265 Bibliography 267 Index 271 ER -