Amazon cover image
Image from Amazon.com

Course in Calculus and Real Analysis / by Sudhir R. Ghorpade, Balmohan V. Limaye.

By: Contributor(s): Material type: TextTextSeries: Undergraduate Texts in MathematicsPublisher: Cham : Springer International Publishing : 2018Edition: 2nd editionDescription: ix, 538 pages; 24 cmISBN:
  • 9783030013998 (hbk.)
Subject(s): Additional physical formats: Print version:: A course in calculus and real analysis; Printed edition:: No title; Printed edition:: No titleDDC classification:
  • 515 GHO 23
Contents:
1. Numbers and Functions -- 2. Sequences -- 3. Continuity and Limits -- 4. Differentiation -- 5. Applications of Differentiation -- 6. Integration -- 7. Elementary Transcendental Functions -- 8. Applications and Approximations of Riemann Integrals -- 9. Infinite Series and Improper Integrals -- 10. Sequences and Series of Functions, Integrals Depending on a Parameter -- A. Construction of the Real Numbers -- B. Fundamental Theorem of Algebra -- References -- List of Symbols and Abbreviations -- Index.
Summary: Offering a unified exposition of calculus and classical real analysis, this textbook presents a meticulous introduction to single-variable calculus. Throughout, the exposition makes a distinction between the intrinsic geometric definition of a notion and its analytic characterization, establishing firm foundations for topics often encountered earlier without proof. Each chapter contains numerous examples and a large selection of exercises, as well as a "Notes and Comments" section, which highlights distinctive features of the exposition and provides additional references to relevant literature. This second edition contains substantial revisions and additions, including several simplified proofs, new sections, and new and revised figures and exercises. A new chapter discusses sequences and series of real-valued functions of a real variable, and their continuous counterpart: improper integrals depending on a parameter. Two new appendices cover a construction of the real numbers using Cauchy sequences, and a self-contained proof of the Fundamental Theorem of Algebra. In addition to the usual prerequisites for a first course in single-variable calculus, the reader should possess some mathematical maturity and an ability to understand and appreciate proofs. This textbook can be used for a rigorous undergraduate course in calculus, or as a supplement to a later course in real analysis. The authors' A Course in Multivariable Calculus is an ideal companion volume, offering a natural extension of the approach developed here to the multivariable setting. From reviews: [The first edition is] a rigorous, well-presented and original introduction to the core of undergraduate mathematics - first-year calculus. It develops this subject carefully from a foundation of high-school algebra, with interesting improvements and insights rarely found in other books. [...] This book is a tour de force, and a necessary addition to the library of anyone involved in teaching calculus, or studying it seriously. N.J. Wildberger, Aust. Math. Soc. Gaz.
Tags from this library: No tags from this library for this title. Log in to add tags.
Holdings
Item type Current library Collection Call number Status Date due Barcode
Books Books H.T. Parekh Library SIAS Collection 515 GHO (Browse shelf(Opens below)) Available K3573

Euro : 59.99/-
TBH86/02

1. Numbers and Functions -- 2. Sequences -- 3. Continuity and Limits -- 4. Differentiation -- 5. Applications of Differentiation -- 6. Integration -- 7. Elementary Transcendental Functions -- 8. Applications and Approximations of Riemann Integrals -- 9. Infinite Series and Improper Integrals -- 10. Sequences and Series of Functions, Integrals Depending on a Parameter -- A. Construction of the Real Numbers -- B. Fundamental Theorem of Algebra -- References -- List of Symbols and Abbreviations -- Index.

Offering a unified exposition of calculus and classical real analysis, this textbook presents a meticulous introduction to single-variable calculus. Throughout, the exposition makes a distinction between the intrinsic geometric definition of a notion and its analytic characterization, establishing firm foundations for topics often encountered earlier without proof. Each chapter contains numerous examples and a large selection of exercises, as well as a "Notes and Comments" section, which highlights distinctive features of the exposition and provides additional references to relevant literature. This second edition contains substantial revisions and additions, including several simplified proofs, new sections, and new and revised figures and exercises. A new chapter discusses sequences and series of real-valued functions of a real variable, and their continuous counterpart: improper integrals depending on a parameter. Two new appendices cover a construction of the real numbers using Cauchy sequences, and a self-contained proof of the Fundamental Theorem of Algebra. In addition to the usual prerequisites for a first course in single-variable calculus, the reader should possess some mathematical maturity and an ability to understand and appreciate proofs. This textbook can be used for a rigorous undergraduate course in calculus, or as a supplement to a later course in real analysis. The authors' A Course in Multivariable Calculus is an ideal companion volume, offering a natural extension of the approach developed here to the multivariable setting. From reviews: [The first edition is] a rigorous, well-presented and original introduction to the core of undergraduate mathematics - first-year calculus. It develops this subject carefully from a foundation of high-school algebra, with interesting improvements and insights rarely found in other books. [...] This book is a tour de force, and a necessary addition to the library of anyone involved in teaching calculus, or studying it seriously. N.J. Wildberger, Aust. Math. Soc. Gaz.

Description based on publisher-supplied MARC data.

There are no comments on this title.

to post a comment.

Copyright @ 2024  |  All rights reserved, H.T. Parekh Library, Krea University, Sri City